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Abstract

While the field of visualization has progressed immensely towards supporting
data analysis tasks in the past decade, the discussion on the use of the third dimen-
sion in visual spaces for reflecting data has encountered both objections and sup-
port along the way. However, the advance of mapping techniques and interaction
approaches have brought new light into the possibilities to use 3D views for cases
where the number of dimensions actually makes a difference for the user. In that
context, landscape views have too long being overlooked as a tool for exploration.
While surfaces are mathematically bi-dimensional, the use of the third coordinate
plane to express elements poses additional charges to the visual system, such as
occlusion and challenges interacting with the layout. In this work we revisit land-
scape views in the light of recent advances in visualizations of high-dimensional
data, which have provided better ways to create bi-dimensional mappings (such as
evolved multidimensional scaling algorithms) and to summarize sets of data (such
as word clouds and image mosaics). These advances provide additional clues to
the user so that the landscape view is capable of both offering an overall view
of the data set and suggesting entry points for further exploration of subspaces
of interest. This article presents a number of strategies to accomplish a better
surface data visualization and illustrates applications of the approach that reflect
its potential use in real life cases. Our contribution includes methods to cluster
and segment a projection, and recursive divisions of the visual space enriched by
textures, which have various uses in multidimensional visualization and analysis
tasks.

1 Introduction

Information visualization concerns building visual layouts of abstract data objects to
unveil relationships and patterns within a dataset. In contrast with 3D object visual-
ization (such as 3D for medical imagery and support for engineering), where 3D is a
natural way to show target objects, abstract data have to be translated to a conceptual
visual model before being presented to analysts.

For abstract data, many types of visual layouts have already been proposed that
make use of both 2D and 3D views. Many of these tools, such as multidimensional
projections, are capable of mapping data expressed as samples in a multidimensional
space into visual spaces (2D or 3D) via transformations aimed at preserving some
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property (such as distances or neighborhoods). We focus here on visually enriching
point placements, that is, in defining a surface view as output for techniques that pro-
duce sets of points placed on a 2D plane. We are concerned with adding information
to that layout in order to improve its expressiveness and to allow additional analysis
to be done by means of a single view.

On top of a point based presentation, visual clues can be added to increase analysis
power, such as color, texture, or iconographic displays for the points. A surface model
can also be built by using the third dimension to reflect a particular variable or concept.
That surface can reflect, through its shape, a global view of the dataset regarding the
relationship between the distance distribution of the points and the particular concept
mapped to the third coordinate. That visualization model is known as a landscape
view or information landscape. Landscape views have been proposed many years
ago, and some have been implemented in software tools that are currently in use,
such as In-spire (http://in-spire.pnnl.gov/about.stm), a text visualization software.
One of the problems with most currently available landscape views for abstract data
is that the basis for landscape construction is subject to the uncertainty of the point
placement strategy.

In point placements, distances between dots in 2D or 3D visual space are meant
to reflect distance between data objects in original multidimensional space. Another
spatial representation may be obtained by coloring the space among dots, producing
a kind of heatmap that is a flat landscape. Variation in height associated with points or
regions produce a surface embedded in 3D, with an additional degree of information
given by the shapes formed in surfaces regions. Including visual artifacts such as
color and icon shapes can assist exploration in both dot and landscape displays.

The effectiveness of any 3D views for data exploration has been widely debated.
Advantages and disadvantages have been observed as will be recalled later. While
the debate is still open, it is also illustrated by many recurring strategies that a good
visual design and a simple mapping to the third dimension can help adding expression
where a 2D view that is already cluttered or limited to convey, at once, general and
particular views of the dataset. This last case, that is, adding expressive power for
better exploration, is the most central point in this work.

The mappings shown in this work are actually on a surface, which for most pur-
poses is a 2D element, however embedded in 3D. Visualizations of the resulting object
may suffer from some of the limitations in 3D visualizations, such as the effects of oc-
clusion and difficulties interacting with the visualization. The input to the visualization,
that is, the 2D projection, is done employing later techniques, capable of high degree
of precision in terms of point neighborhoods. Also, the produced landscapes are
enriched by visual mappings that support summarization and have being employed
successfully in various 2D applications.

The result of this effort is a revisited and improved landscape display for visual-
izing and exploring a set of data objects. We present a pipeline for the construction
of the surface landscapes for multidimensional data, supported by newer projection
techniques and visually improved by segmentation algorithms, guiding lines and tex-
tures connected to the data, as well as by a 2D cursor for interaction. The result is
amenable to user exploration, and reinforces our belief that geographic metaphors
can be an effective exploratory environment for visual interpretation data sets, taking
advantage of the third dimension while keeping users mental references stable.

The rest of this article is organized as follows. In Section 2, we recall the related
work on landscape views and we group the issues surrounding the 2D/3D question.
In Section 3, we present our pipeline, together with examples of landscapes for non-
hierarchical data. In Section 4, we present our concluding remarks.
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2 Related work

The geographic metaphor, where data that is not geographical in nature are repre-
sented as a landscape, is recurrent in information visualization. The intention is that
the user should benefit from the familiar notion of a map and could then explore data
objects guided by neighboring relations intrinsically imposed by geometry and repre-
sented by mountains and valleys. Fabrikant et al. (2010) suggests that landscape layouts
work not because people understand geomorphological landscapes but because “ev-
eryday experience with manipulable tabletop spaces is extended metaphorically to a
wide variety of domains of other spatial scales”, and then people associate higher with
more and bigger with more.

Chalmers (1993) proposed reducing the dimensionality of a space obtained from
the weighted term-frequency of a document collection, obtaining a 3D layout to which
a horizon is added. The resulting layout resembles a map where documents are
shown as icons. He points out advantages of the approach, such as the wide overview
provided on the data, the representation continuity, and the preservation of the mental
model. A remarkable point of that article is the reference to the book by Lynch
(1960), that enumerates elements in a city map which are strongly related to the
ability of building a city image and were identified by persons during surveys. Such
elements are paths, edges (linear elements that are not paths), districts (medium to
large portions of the city), nodes (strategic points which the observer may enter while
traversing the city) and landmarks (reference points). Lynch remarks that continuity
and contrast should coexist and balance, and that a city view should be stable over time.
He also states that such elements are present in models of more general environments,
not only in models for cities.

Wise et al. (1995) introduced ThemeScape, that starts from a collection of textual
documents, builds a vector representation and then applies a multidimensional re-
duction to obtain a 2D space. Theme strength of each point is mapped to the third
dimension to produce a landscape. The authors highlight that the layout is suitable
for revealing interrelationships among documents in either large or small scale. Us-
ing a multidimensional reduction to obtain a map is a prevalent procedure, although
computationally expensive in the past.

There are many multidimensional reduction techniques in the literature, such as
principal component analysis (Jolliffe, 2002), self-organizing maps (Kohonen et al.,
2001) force-directed placement (Fruchterman & Reingold, 1991) and multidimensional
projections. More recently a large improvement has been achieved on techniques
for multidimensional projections resulting in algorithms that are general, fast and
precise. This improves on previous algorithms that were either slow, subject to large
deviations regarding the original space or restricted to data having specific patterns.
Among these techniques we cite ProjClus (Paulovich & Minghim, 2006) and Least-
Square Projection (LSP – Paulovich et al., 2006).

Skupin & Buttenfield (1996) proposed building landscapes for newspaper articles
applying MDS to a binary vector space of term presence in articles, then mapping the
3rd dimension to the number of terms in each article. They report using a geographic
information system for rendering and providing interaction with the display, both in
2D and in 3D.

Davidson et al. (1998) introduced a system (VxInsight) for information visualization
that represents data and their relationships as a graph and them produces displays
through Laplacian eigenvectors or force-based placement of vertices. A landscape
is built mapping density to the 3rd dimension. The display may be augmented by
showing edges between objects and by labeling.
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Boyack et al. (2002) build a 2D space from scientific articles applying a force-
directed scheme to text attributes, and then add a third dimension that reflects density,
obtaining a landscape. They also allow adding arrows between data points to indicate
citations, augmenting the display with different symbols.

Bischoff et al. (2004) suggest combining ThemeScape with the ThemeRiver (Havre
et al., 2002) to analyze a document collection over time. They also superimpose a tree
on the landscape to highlight cross-references among documents.

Skupin (2004) builds a multi-level 2D landscape for a set of scientific abstracts in
cartography. The lowest zoom level has the documents represented as points. The
next zoom level groups points related by the occurrence of specific terms into clusters.
Each subsequent zoom level groups clusters in the previous one under more general
terms. The highest zoom level depicts large clusters that represent broad terms in
the area. Hall & Clough (2013) build a similar visualization.

Jaffe et al. (2006) introduced Tag Maps, that superimpose a word-cloud on a map.
Their application used word-clouds built from tags added to photos that were geo-
referenced. They report that users were positive regarding Tag Maps for summariz-
ing a map region.

In a comprehensive study on points and landscapes, Tory et al. (2007) compared
seven different dot and landscape representations of data: colored and greyscale
points; colored and greyscale 2D landscapes; colored, greyscale and uncolored 3D
landscapes. Users were evaluated in the task of selecting a display region that con-
tained the most points of a specified target value range, which were most often repre-
sented by a single color or grey value. Landscape displays varied in visual complexity
(regarding levels) along the experiments. Users were asked to rate the displays with
respect to the task they performed. The authors concluded that colored points were
the most accurate, fast and highly rated display. Landscapes were from 4 to 10%
less accurate and from 1.9 to 4.2 times slower than points. They concluded that 2D
was faster than 3D landscapes with no difference in accuracy, and hypothesize that
occlusion and the need to rotate the display may have contributed to the difference.
They also reported that color displays were faster than greyscale displays, and that
uncolored 3D displays were the worst.

In a follow-up experiment, Tory et al. (2009) found that people memorized dot dis-
plays more accurately than 2D or 3D landscapes, hypothesizing that the extra features
of landscapes may be distracting. 3D landscapes were found to be more accurately
memorized than 2D landscapes. They also reported that in most cases the memory
accuracy increased with points density.

In the work of Jianu & Laidlaw (2013), a set of genes is represented on a map
such that the distance is proportional to the dissimilarity of expression profiles under
multiple biological conditions. The interaction with the map is done though zoom
and pan. Different levels are represented with a different layout, for instance, point,
glyphs and heatmaps.

Similar to the landscape metaphor is the islands metaphor, that includes water and
islands to the map, and was used by Pampalk (2001) to visualize music datasets.

Much work in visualization points to the differences among 2D, 3D and combined
displays, regarding both the user ability to interact with the display and user’s perfor-
mance on exploratory tasks. There seems to be an undisputed matter the conclusion
that 3D displays, or the combination of 3D and 2D displays, are superior when the
task is to visualize models of real world objects, scenes or phenomena.

In other contexts, including in information visualization, the use of 3D has received
critics that range from mild to acute. The negative characters of 3D layouts that are
most frequently pointed out are the occlusion of objects, and the difficulty to maintain a
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reference with respect to the viewing angle and to the space axes, impairing navigation
and orientation. Dealing with such issues demands, for instance, removing layers,
using transparency or providing additional views, at the cost of visual stability and
context loss, and additional complexity to the user.

As an example, Cockburn & McKenzie (2001) have noticed no improvement of 3D
over 2D data mountains (Robertson et al., 1998) in tasks of organizing and retrieving
web pages represented as thumbnails. Westerman & Cribbin (2000) concluded that
2D is more effective than 3D for searches in a virtual space built from data, but may
be better for browsing and to visualize complex relationships among data.

Risden et al. (2000) compared the performance of specialized users in searching
and updating categories of web-page indices both presented as lists and sublists in 2D
and as 3D graphs in a hyperbolic display. They observed that 3D improved speed
while preserved precision in search tasks, but 2D was more effective for the creation
of new categories.

Piringer et al. (2004) analyzed scatter-plots in 2D and in 3D, and remark the dif-
ficulty of recognizing point density and depth in 3D views. They propose alternative
representations for the points to improve point discrimination, but note that for dense
spaces many data objects may be represented by a single pixel, which is a limitation
that is difficult to circumvent. Tory et al. (2006) analyzed 2D, 3D and combined dis-
plays for estimating relative position, orientation and volume of objects, and conclude
that 3D is suitable for approximated navigation and positioning, but are not precise in
general for precise positioning and navigation. In his book Mazza (2009) discourages
the use of 3D except for real-world visualizations.

Fabrikant et al. (2014) conducted a study with network spatializations and found no
improvement in the ability of users to identify similar documents in 3D compared to
2D, hypothesizing that the extra information provided by 3D may not be worth the
extra cognitive effort.

Many of the problems encountered with 3D user studies refer to lack of reference
to support recognizing the patterns in 3D with the same models as in 2D, and with
difficulties in interaction. However, along the last years there were very informative
and successful visualizations that employed the third dimension to allow users to in-
terpret additional information or to reduce information loss due to mapping from
higher dimensions.

One such example shows the use of 2.5 visualizations to explore biological net-
works (Fung et al., 2008). While graphs in general are particularly difficult to un-
derstand from a 3D representation, a possible 2.5D alternative is to draw parts of the
graph in layers, offering thus references for recognition. The article shows a possible
rendering for a network with various ‘piled up’ slices, each one with a sector of the
graph that is connected to the other slices or planes through graph edges.

Another example of 3D representation shows a mapping from multidimensional
scaling algorithms onto 3D space rather than the usual 2D space (Nam & Mueller,
2013). The resulting 3D point cloud is difficult to interpret statically, but is incremented
by the possibility of rotation, counting on motion parallax to allow the user to interpret
proper clusters in the data. Interaction can be done over any 2D view from the 3D
plot. Another work shows an alternative way to interact with 3D clouds, via clustering,
which eases selection by users allowing them to drill down a particular cluster formed
in the projection (Poco et al., 2012).

Although, for abstract datasets, 2D or point views are more common, the use of the
third dimension (or third coordinate plane) can and most likely should be considered
to allow additional representational power to the user.

In that sense, landscape views, besides being a common representation for actual

5



Figure 1: Enhanced landscape construction pipeline.

terrain and geographical applications, can provide support to interpretation of various
types of information. Some of the advantages are:

• supports perception of distribution according to a selected concept or variable;

• allows global description of similarity data mapped to 2D planes;

• lends itself to summarization of datasets;

• through artifacts describing regions, levels and distributions, potentially gener-
ates additional insights during exploration.

Current 2D mappings based on multidimensional projections have evolved greatly
in recent years, and it is our argument that the new capabilities of these recent ap-
proaches improve the potential for coherent and informative landscape views. The
reason is twofold:

• recent projections are more precise, forming groups of similar objects with less
disturbance of neighborhoods, which eases exploration, and

• projections are nowadays also faster, making landscape views an alternative
analysis tools for multilevel interaction

In this article we illustrate the pipeline for creating and presenting landscape views
that take advantage of the descriptive nature of multidimensional projections and
demonstrate the artifacts that support better landscape exploration for applications
such as interpretation of text and image collections.

3 Enhanced landscape construction

Starting from a set of data objects, we build a landscape through the pipeline shown
in Figure 1. Each data object is processed to obtain a vector, that typically has many
dimensions. Then a projection technique is used to obtain a 2D space with point prox-
imity based on similarity, which in turn is clustered and segmented. An additional data
dimension is used to generate a landscape for display. If data objects are representa-
tives of image or text data sets, then a word cloud or an image mosaic may be used
as landscape texture. We discuss each step of the pipeline next.
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(a) LSP (b) PCA (c) SOM

Figure 2: Projections of CBR+. Color indicates pre-classification: CBR is dark-blue,
ILP if light-blue, IR is yellow and SON is red.

Data and Vector Space Obtaining a vector from each data object typically involves
extracting features and evaluating some measures. For text, term frequency-inverse
document frequency (TF-IDF) is often used (Salton & Buckley, 1988). For images,
descriptors like SIFT (Li & Wang, 2003) and BIC (Stehling et al., 2002), as well as many
others, may be applied to obtain descriptive vectors for objects. The resulting vector
space is usually a high-dimensional space.

For instance, a dataset with extracts of scientific articles, containing title, authors,
abstract and references, from journals devoted to Case-based Reasoning (CBR), In-
ductive Logic Programming (ILP), Sonification (SON) and Information Retrieval (IR)
was first processed for stop-words removal, stemming, Luhn’s cut of terms with high-
est and lowest frequencies (Luhn, 1958) and then TF-IDF was evaluated. The resulting
vector-space has 675 vectors with 1,423 dimensions. We will refer to this dataset as
CBR+. The class of each article reflects origin of the document, then, in terms of
subjects, some articles may not be in the most suitable class or should belong to more
than one class. It is often the case in practice that pre-classification, if one exists,
should not be taken strictly.

2D layout - mapping higher dimensions to visual 2D spaces The next step is to
project the vector-space, obtaining a 2D space. This is the role of a multidimensional
projection, which strives to maintain certain properties of the original space in the
projected space. For instance, Figure 2 shows different projections for the CBR+
dataset. The depicted layouts were produced by LSP, Principal Component Analy-
sis (PCA – Jolliffe, 2002) and Self-Organizing Maps (SOM – Kohonen et al., 2001).

Clustering - finding suitable groups of objects in projections Clustering is the
next step in the process. The goal is to define groups that allow partitioning the space
into regions that will enhance data organization for exploration and navigation in data
space.

Although any clustering algorithm may be used, a clustering algorithm that favors
a smooth partitioning of the space into regions is more suitable. We propose two
algorithms based on a Voronoi diagram. One defines clusters automatically and the
other takes user guidance for defining the clusters. Both are very efficient computa-
tionally because a Voronoi diagram may be built in O(n lg n) time and the resulting
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(a) Voronoi clustering. (b) Seed clustering.

Figure 3: Voronoi and Seed clustering of CBR+ after LSP (from Figure 2a. The
Voronoi clustering distance parameter value is 5% of the largest distance between
any two points. In the seed clustering display, seeds are highlighted. Colors indicate
formed clusters.

structure is a planar map.
The first algorithm, called Voronoi Clustering, is greedy and distance-based. The

algorithm starts with a Voronoi diagram where each point is a site (thus each diagram’s
region has exactly one data point). The algorithm visits every point p in arbitrary order
and considers its neighbors. If the distance between p and a neighbor q is smaller
than an input threshold then the regions of p and q are united.

The second algorithm, called Projection Seed Clustering, relies on the user to
provide cluster seeds, visually selecting points on the projection display. Each cluster
seed will give rise to a cluster. Suppose a graph G where each site is a vertex and
such that there is a weighted edge between two vertices if their region in the Voronoi
diagram is adjacent. Edge weights are distances. For each non-seed point p, evaluate
the shortest-path from p to each seed s, and record the edge es in the shortest-path
having the largest weight. Then add p to the region of the seed whose path from p
contains the edge with smallest weight among those recorded for the shortest-paths,
breaking ties arbitrarily. Although this algorithm resembles a shortest-path evaluation
in a graph, the graph must not be built explicitly; using the Voronoi diagram and a
queue leads to a very efficient implementation.

Figure 3 shows the Voronoi and seed clustering for CBR+ applied after LSP.
When the input is a pre-classified dataset, it may be an option to skip clustering

altogether. After projection, the 2D space may be segmented to produce a partition
of the display, as those obtained with the clustering algorithms described above. The
following algorithm will produce a segmentation of the 2D space from labeled (col-
ored) points, with the premise that distance in the layout takes precedence over class
information. Starting with a Voronoi diagram where each point is a site, unite adjacent
regions whose site belong to the same class. Then, while either there are regions with
too few points or there is a large number of regions, unite the smallest region with
the closest one. An example output is shown in Figure 4.

There are other scenarios for using the above segmentation algorithm. One of
them is to reflect, in 2D space, clusters that approximate a cluster in the original space.
Points are clustered in original space, which may give a precision gain, projected in
2D, and then subject to this segmentation algorithm, taking each cluster as a class,
to obtain a more regular partitioning of the space into regions. Another scenario
is using this segmentation to reduce the number of clusters obtained with Voronoi
clustering or any other clustering algorithm.
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(a) Before segmentation. (b) After segmentation.

Figure 4: The application of segmentation on a previously clustered space. The num-
ber of clusters was reduced by grouping small clusters to the closer ones.

Figure 5: A region partitioned into three levels of clustering. Clusters are divided by
a thick continuous curve in the first level, by a blue discontinuous curve in the second
level and by a thin discontinuous magenta curve in the third level.

The clustering algorithms described above may be applied recursively to refine
the layout in as many levels as wanted, limited by the number of levels or the num-
ber of points in each region. For instance, Figure 5 shows a diagram partitioned in
three levels. Such multi-level clustering naturally leads to multi-level presentations,
supporting the generation of landscape layouts in larger scale.

Landscaping The layout may be enriched by mapping point color or attribute to
height, thus generating a surface whose shape is indicative of data behaviour. We
have considered two different heat maps that help the exploration of the layout. One
is generally applicable: a density heat map. The other, for text, is a term-frequency
heat map. Both are constructed evaluating a scalar for each point and mapping such
scalars onto a color scale. For instance, in Figure 6 the CBR+ dataset is shown under
different heat maps. The scalar for density was evaluated using the Epanechnikov
kernel function (Silverman, 1986). The scalar for term-frequency was evaluated as
the number of occurrences of one or more words (user input) in a document divided
by the number of words in the document.

The landscape is built from the 2D space mapping one attribute to the third di-
mension. For instance, Figure 7 shows a view of a landscape built for CBR+ with
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(a) Class colors. (b) Density heat map colors.

(c) Term-frequency heat
map colors for case, based
and reasoning.

Figure 6: Heat maps for CBR+.

density mapped to height. The cursor is positioned on a point, whose neighbors are
highlighted by connecting lines and which label is shown. This type of cursor has
been known as spider cursor (Minghim et al., 2005). Other attributes may be used
to define height as well, including search terms for texts. This layout allows a global
analysis relating the dataset to an attribute (e.g. group density or term) as well as
individual analysis of both groups and points.

Figure 7: Landscape for CBR+, with density mapped to height.

We also propose combining the landscape with a texture that summarizes regions
and adds more information to the layout, enhancing navigation and exploration. For
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text datasets, word clouds will provide a perfect texture for exploration. Figure 8
shows a view of the CBR+ density landscape enhanced by a word cloud built with the
algorithm proposed by Paulovich et al. (2012), which generates word clouds in planar
regions. Rotating the view allows alternating between a clearer view of the landscape
slopes and valleys and a clearer view of words in each region. The height factor
can also be removed when the association with the mapped attribute is no longer of
interest.

The bordering lines of regions defined by clusters and segmentation also improve
navigation and help preserving the mental model. Borders may enhance the per-
ception of regions of interest and help preserving reference points as the layout is
rotated and zoomed, alleviating the effects of occlusion and flatness imposed by an-
gled perspectives. Groups can be selected at once via the boundaries of the regions
detected in the current segmentation. In the figures those boundaries are shown as
linear curves.

Figure 8: Landscape with word cloud texture and clusters for CBR+, with density
mapped to height.

Another example appears in Figure 9, that shows a landscape for a news dataset
consisting of 1,771 RSS news feeds collected from BBC, CNN, Reuters and Associated
Press during June and July of 2011. After processing, each document was turned into
a vector of 1,084 dimensions.

A natural texture for image datasets is an image mosaic, such as those proposed by
Tan et al. (2012). Figure 10 illustrates the concept for images in a sub-set of the Corel
dataset that has 1,000 images divided in 10 classes (African tribes, beaches, buildings,
buses, dinosaurs, elephants, flowers horses, mountains and food), from which 150
dimensions were extracted through SIFT descriptors.

A summary may also be provided for a set of videos resulting also in a mosaic of
images extracted from the video by summarizing algorithms. Music or other sound
recordings may be summarized by a word cloud of tags, with added aural summaries
played when a cursor is positioned on regions or points.

In general, a dataset may be summarized in many ways. Numeric attributes may be
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(a) News landscape with word clouds, and density as height.

(b) Flatter version of the news landscape.

(c) News landscape with search terms frequencies (murdoch and
hacking) mapped to height.

Figure 9: Landscapes from RSS news feeds.

mapped on the landscape themselves or displayed as dispersion curves or histograms,
for instance. Categorical attributes may be displayed as tag clouds as well, for instance.

Naturally, on the top of the landscape displays that we propose here, a series of
symbols and glyphs may be added to enhance some characters of each dataset. While
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the effectiveness of adding more elements to the display must be considered for each
dataset, particular applications may benefit from additional information on the display.

Finally, the landscape display, coupled with summarization and segmentation algo-
rithms, may open the possibility for multi-level presentations. For instance, summa-
rization can occur in various levels. While at the top level a general view, as well as
the large parts of the dataset, are displayed, the user may choose a region to focus
his or her exploration. Figure 11 shows a top view of the news dataset presented
before. In that figure, the top level is presented and subjects of the various regions
are displayed via a co-occurrence based topic extraction algorithm. A group is then
selected, and for that group, the display is repeated, with an added level of detail given
by new clustering followed by segmentation. The strategy is prone to be applied for
multi-level point-based and surface-based displays.

4 Conclusion

Landscapes for information visualization have been encouraged by many authors,
although without support from experiments with user subjects. We believe that the
latest projection techniques that have been developed recently renew the strength of
mapping data through the concept of landscapes, as they are both fast and precise
enough to enable real-time construction of layouts recursively and in a very large
scale. Visual guidance, as those we introduced in this article, namely the division of the
landscape in regions and the use of texture, also help in avoiding disorientation in 3D
and increases contextual overviews. The view lends itself to multi-level visualizations,
allowing for future development of visualization in larger scale.
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(a) Mosaic over projection. Central picture of the cursor is shown.

(b) Mosaic with density landscaping. Central picture of the cursor
is shown.

(c) Mosaic with display of all pictures touched by the spider cursor.

Figure 10: Landscape with mosaic texture and clusters for the Corel dataset, a 10-class
image dataset. Point colors indicate classes.
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(a) News map with groups of news
subjects, identified by topics. (b) Selection of a group of news feeds.

(c) New level of grouping in the se-
lected set, after clustering and seg-
mentation.

Figure 11: Drilling down on the map levels.
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